MATH2403A INSTRUCTOR:		TEST 1	NAME:STUDENT NO:
1. Given the differential equation $y''(x) - 12y'(x) + 36y(x) = 0$, find (a) the auxilliary equation (b) the characteristic-values (the r-roots) $r_1 = $, $r_2 = $, (c) two solutions $y_1 = $, $y_2 = $ (d) Show that these two solutions are linearly independent. (e) Find a general solution.			
2. Find a particular solution for $y''(x) - 12y'(x) + 36y(x) = 36sin(6x)$.			
3. Find a particular solution for $y''(x) - 12y'(x) + 36y(x) = 36e^{6x}$.			
4. Given the differential equation $y^{(4)}(x) - 16y(x) = 0$, obtain (a) the auxilliary equation (b) the characteristic-values (the r-roots) (c) the general solution in terms of real-valued functions.			
5. Consider the equat (a) Explain whether y			

(b) Explain whether you can find solutions for (E) of the form $y(x) = x^r$

where r is a constant.

 (\mathbf{F}_2)