\qquad
INSTRUCTOR: \qquad
\qquad
Show all work.

1. A vertical spring with a spring constant equal to $108 \mathrm{lb} / \mathrm{ft}$ has a 96 lb weight attached to it . A dashpot (or a shock absorber) with a damping coefficient $\mathrm{c}=36 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$ is attached to the weight. Suppose that a downward force of $f(t)=\mathbf{7 2} \cos (6 t)$ is applied to the weight. If the weight is released from rest at the equilibrium position at time $t=0$,
(A) show that the differential equation governing the displacement $x(t)$ is

$$
x^{\prime \prime}(t)+12 x(t)+36 x(t)=24 \cos (6 t)
$$

where $g=32 \mathrm{ft} / \mathrm{sec}^{2}$ is used.
(B) Find the solution satisfying the equation established in Part (A) and the given initial conditions.
2. An inductor of $\mathbf{5}$ henries is connected in series with a capacitor of $\mathbf{1 / 1 8 0}$ farads, a resistor of $\mathbf{6 0} \mathbf{~ o h m s}$ and a voltage-supply given by $E(t)=120 \cos (6 t)$ in volts. Suppose that both the charge Q and the current I are zero initially.
(A) Show that the differential equation governing the charge $\mathbf{Q}(t)$ is

$$
Q^{\prime \prime}(t)+12 Q^{\prime}+36 Q(t)=24 \cos (6 t)
$$

(B) Find the charge $\mathbf{Q (t)}$ satisfying the equation of Part (A) and the given initial conditions.
3. Consider the system

$$
x^{\prime}(t)=y(t), \quad y^{\prime}(t)=-36 x(t)-12 y(t)
$$

(A) Write the system in the form $\vec{x}^{\prime}(t)=A \vec{x}(t)$.
(B) Find the eigenvalues of A.
(C) Guess a form for the general solutios $x_{g}(t), y_{g}(t)$.
(D) Hence find $x_{g}(t), y_{g}(t)$.
4. Solve $\quad x^{\prime}(t)=y(t), \quad y^{\prime}(t)=-36 x(t)-12 y(t)+24 \cos (6 t)$ with the initial conditions $x(0)=0, y(0)=0$.
(B)Write your solutions in vector form.
(C)Write your solutions in matrix form. What is the fundamental matrix you have found?

