(Δ)	Page	1
(\mathbf{A})	rage	J

NAME:_____ MATH2403A__ 4-13-2000TEST 6 STUDENT NO:____ INSTRUCTOR:_____ Show all work.

- 1. (A) Find all critical points of $x'' x^4 + 25 x^2 144 = 0$.
 - (B) Use the energy method to determine the stability of the critical points found in Part (A).
- 2. Find Laplace transforms of the following f(t):
- (1) $f(t) = 9t^8$
- (2) $f(t) = 3e^{-2t} + 2cosh(3t)$
- $(4) f(t) = 2sin^2(3t)$
- 3. Find the inverse Laplace transforms of the following F(s):

- $(1) \ F(s) = rac{1}{(s+2)^9} \ (2) \ F(s) = rac{14}{(s-4)(s-9)} \ (3) \ F(s) = rac{12}{(s^2+1)(s^2+9)}$
- 4. Use Laplace transforms to solve the initial value problem

$$x''(t) + 4x'(t) + 8x(t) = 0$$
 with $x(0) = 3$, $x'(0) = 0$.