Mathematics 2403 Hour Examination

W. L. Green June 1, 2000

Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1 (36) Find all solutions to each of the following equations:

a.
$$y'' - 3y' - 10y = 0$$

b.
$$y'' - 3y' - 10y = 20e^{5x}$$

c.
$$y'' - 3y' - 10y = \cos(5x)$$

- 2. (12) Solve the initial value problem $y'' y = \sin x$, y(0) = 0, y'(0) = 1.
- 3. (12) Show that the set $\{e^{2x}, e^{3x}\}$ is linearly independent.
- 4. (12) If $(D^2 + 4)^2 D^3 (D 2)^4 y = 0$, what is the form of the general solution to this equation? (You needn't determine the constants; remember that D means "differentiate".)
- 5. (28) An unforced mass-spring system without damping has equation 4x'' + 9x = 0.
- a. (8) Find the circular frequency and the period of this system.
- b. (10) Find the general (real) solution to the equation 4x'' + 9x = 0.
- c. (10) If this system is set in motion with an initial displacement of $\frac{1}{2}$ and initial velocity of $\frac{1}{2}$, what is the amplitude of the motion?

Answers. 1. a. $y = C_1 e^{5x} + C_2 e^{-2x}$ b. $y = C_1 e^{5x} + C_2 e^{-2x} + \frac{20}{7} x e^{5x}$

$$y = C_1 e^{5x} + C_2 e^{-2x} - \frac{7}{290} \cos(5x) - \frac{3}{290} \sin(5x)$$

2.
$$y = \frac{3}{4}e^x - \frac{3}{4}e^{-x} - \frac{1}{2}\sin(x)$$

4.

$$C_1 \sin(2x) + C_2 \cos(2x) + C_3 x \sin(2x) + C_4 x \cos(2x) + C_5 + C_6 x + (C_8 + C_9 x)e^{2x}$$

5. a. circular frequency = 3/2, period = 4 /3. b. $C_1 \cos\left(\frac{3t}{2}\right) + C_2 \sin\left(\frac{3t}{2}\right)$

c.
$$\sqrt{13}/6$$