Mathematics 2403 Hour Examination

W. L. Green June 1, 2000

Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1 (36) Find all solutions to each of the following equations:
a. $y^{\prime \prime}-3 y^{\prime}-10 y=0$
b. $y^{\prime \prime}-3 y^{\prime}-10 y=20 e^{5 x}$
c. $y^{\prime \prime}-3 y^{\prime}-10 y=\cos (5 x)$
2. (12) Solve the initial value problem $y^{\prime \prime}-y=\sin x, y(0)=0, y^{\prime}(0)=1$.
3. (12) Show that the set $\left\{e^{2 x}, e^{3 x}\right\}$ is linearly independent.
4. (12) If $\left(D^{2}+4\right)^{2} D^{3}(D-2)^{4} y=0$, what is the form of the general solution to this equation? (You needn't determine the constants; remember that D means "differentiate".)
5. (28) An unforced mass-spring system without damping has equation $4 x^{\prime \prime}+9 x=0$.
a. (8) Find the circular frequency and the period of this system.
b. (10) Find the general (real) solution to the equation $4 x^{\prime \prime}+9 x=0$.
c. (10) If this system is set in motion with an initial displacement of $\frac{1}{2}$ and initial velocity of $\frac{1}{2}$, what is the amplitude of the motion?

Answers. 1. a. $y=C_{1} e^{5 x}+C_{2} e^{-2 x}$ b. $y=C_{1} e^{5 x}+C_{2} e^{-2 x}+\frac{20}{7} x e^{5 x}$ $y=C_{1} e^{5 x}+C_{2} e^{-2 x}-\frac{7}{290} \cos (5 x)-\frac{3}{290} \sin (5 x)$
2. $y=\frac{3}{4} e^{x}-\frac{3}{4} e^{-x}-\frac{1}{2} \sin (x)$
4.
$C_{1} \sin (2 x)+C_{2} \cos (2 x)+C_{3} x \sin (2 x)+C_{4} x \cos (2 x)+C_{5}+C_{6} x+\left(C_{8}+C_{9} x\right) e^{2 x}$
5. a. circular frequency $=3 / 2$, period $=4 \pi / 3$. b. $C_{1} \cos \left(\frac{3 t}{2}\right)+C_{2} \sin \left(\frac{3 t}{2}\right)$
c. $\sqrt{13} / 6$

