Mathematics 2403 Hour Examination

W. L. Green June 1, 2000

Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1 (36) Find all solutions to each of the following equations:

a.
$$y'' - 3y' - 4y = 0$$

b.
$$y'' - 3y' - 4y = e^{4x}$$

c.
$$y'' - 3y' - 4y = \sin(4x)$$

- 2. (12) Solve the initial value problem $y'' + y = e^x$, y(0) = 0, y'(0) = 1.
- 3. (12) Suppose that $y_1'' + 2y_1' + 2y_1 = e^x$ and that $y_2'' + 2y_2' + 2y_2 = e^{-x}$. Give a solution to $y'' + 2y' + 2y = \frac{e^x + e^{-x}}{2}$.
- 4. (12) If $(D+7)^2(D^2+25)D^4y=0$, what is the form of the general solution to this equation? (You needn't determine the constants; remember that D means "differentiate".)
- 5. (28) An unforced mass-spring system without damping has equation 36x'' + 25x = 0.
- a. (8) Find the circular frequency and the period of this system.
- b. (10) Find the general (real) solution to the equation 36x'' + 25x = 0.
- c. (10) If this system is now damped, so that the equation for the system becomes 36x'' + cx' + 25x = 0 with c > 0, what is the value of c which gives us critical damping of the motion?

Answers.

1. a.
$$y = C_1 e^{4x} + C_2 e^{-x}$$
 b. $y = C_1 e^{4x} + C_2 e^{-x} + \frac{1}{5} x e^{4x}$

c.
$$y = C_1 e^{4x} + C_2 e^{-x} + \frac{3}{136} \cos(4x) - \frac{5}{136} \sin(4x)$$

2.
$$y = \frac{1}{2}e^x + \frac{1}{2}\sin(x) - \frac{1}{2}\cos(x)$$
 3. $\frac{1}{2}(y_1 + y_2)$

4.
$$(C_1 + C_2 x)e^{-7x} + C_3 \sin(5x) + C_4 \cos(5x) + C_5 + C_6 x + C_7 x^2 + C_8 x^3$$

5. a. circular frequency = 5/6, period = 12 /5. b.
$$A\cos\left(\frac{5t}{6}\right) + B\sin\left(\frac{5t}{6}\right)$$
. c. c = 60.