Mathematics 2403 Hour Examination

W. L. Green June 1, 2000

Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1 (36) Find all solutions to each of the following equations:
a. $y^{\prime \prime}-3 y^{\prime}-4 y=0$
b. $y^{\prime \prime}-3 y^{\prime}-4 y=e^{4 x}$
c. $y^{\prime \prime}-3 y^{\prime}-4 y=\sin (4 x)$
2. (12) Solve the initial value problem $y^{\prime \prime}+y=e^{x}, y(0)=0, y^{\prime}(0)=1$.
3. (12) Suppose that $y_{1}{ }^{\prime \prime}+2 y_{1}{ }^{\prime}+2 y_{1}=e^{x}$ and that $y_{2}{ }^{\prime \prime}+2 y_{2}{ }^{\prime}+2 y_{2}=e^{-x}$. Give a solution to $y^{\prime \prime}+2 y^{\prime}+2 y=\frac{e^{x}+e^{-x}}{2}$.
4. (12) $\operatorname{If}(D+7)^{2}\left(D^{2}+25\right) D^{4} y=0$, what is the form of the general solution to this equation? (You needn't determine the constants; remember that D means "differentiate".)
5. (28) An unforced mass-spring system without damping has equation $36 x^{\prime \prime}+25 x=0$.
a. (8) Find the circular frequency and the period of this system.
b. (10) Find the general (real) solution to the equation $36 x^{\prime \prime}+25 x=0$.
c. (10) If this system is now damped, so that the equation for the system becomes $36 x^{\prime \prime}+c x^{\prime}+25 x=0$ with $c>0$, what is the value of c which gives us critical damping of the motion?

Answers.

1. a. $y=C_{1} e^{4 x}+C_{2} e^{-x}$ b. $y=C_{1} e^{4 x}+C_{2} e^{-x}+\frac{1}{5} x e^{4 x}$ c. $y=C_{1} e^{4 x}+C_{2} e^{-x}+\frac{3}{136} \cos (4 x)-\frac{5}{136} \sin (4 x)$
2. $y=\frac{1}{2} e^{x}+\frac{1}{2} \sin (x)-\frac{1}{2} \cos (x)$ 3. $\frac{1}{2}\left(y_{1}+y_{2}\right)$
3. $\left(C_{1}+C_{2} x\right) e^{-7 x}+C_{3} \sin (5 x)+C_{4} \cos (5 x)+C_{5}+C_{6} x+C_{7} x^{2}+C_{8} x^{3}$
4. a. circular frequency $=5 / 6$, period $=12 \pi / 5$. b. $A \cos \left(\frac{5 t}{6}\right)+B \sin \left(\frac{5 t}{6}\right)$.c. c $=60$.
