Mathematics 2403 Hour Examination

W. L. Green

June 15, 2000
Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1. (36) Consider the homogeneous system $\begin{aligned} & x^{\prime}=2 x+y \\ & y^{\prime}=6 x+y\end{aligned}$
a. (9) Write this system in matrix form $\mathbf{x}^{\prime}=A \mathbf{x}$ and find the eigenvalues for A.
b. (9) Find the general solution for this system.
c. (18) Find the general solution for the nonhomogeneous system $\begin{gathered}x^{\prime}=2 x+y+e^{2 t} \\ y^{\prime}=6 x+y\end{gathered}$
2. (24) For each of the following systems, specify the form for the solution for the system. Do not compute the coefficients. (For example, the form for the general solution of $x^{\prime}=x$
$y^{\prime}=-5 y$ is $\begin{gathered}x=A_{1} e^{t}+A_{2} e^{-5 t} \\ y=B_{1} e^{t}+B_{2} e^{-5 t}\end{gathered}$ In this example A_{2} and B_{1} are zero, but I don't want you to have to compute any of the A 's or the B 's.) [Hint: Look again at problem 1.]
a. (8) $\begin{gathered}x^{\prime}=x+y \\ y^{\prime}=-5 x-y\end{gathered}$

$$
\mathbf{x}=?(\text { General solution })
$$

b. (8) $x^{\prime}=2 x+y$
b. (8) $y^{\prime}=6 x+y+e^{-t}$
$\mathbf{x}_{\mathrm{p}}=?$ (A particular solution)
c. (8) $\begin{gathered}x^{\prime}=2 x+y \\ y^{\prime}=6 x+y+\sin 3 t\end{gathered}$ $\mathbf{x}_{\mathrm{p}}=?$ (A particular solution)
3. (16) The system $\begin{gathered}x^{\prime}=x+2 \\ y^{\prime}=x-y+2\end{gathered}$ has fundamental matrix $U=\left[\begin{array}{cc}2 e^{t} & 0 \\ e^{t} & e^{-t}\end{array}\right]$. Find a particular solution for this system.
5. a. (8) Find an explicit formula for $e^{t A}$, where $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 5\end{array}\right]$.
b. (8) Find an explicit formula for $e^{t A}$, where $A=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right]$.
c. (8) Solve the initial value problem $\left[\begin{array}{l}x^{\prime}=2 y \\ y^{\prime}=0\end{array}\right], x(0)=5, y(0)=-3$.

Answers.

1. $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}2 & 1 \\ 6 & 1\end{array}\right)\binom{x}{y}, \lambda=4,1$ b. $\binom{x}{y}=C_{1}\binom{1}{2} e^{4 t}+C_{2}\binom{1}{-3} e^{-t}$
c. $\binom{x}{y}=C_{1}\binom{1}{2} e^{4 t}+C_{2}\binom{1}{-3} e^{-t}+\binom{-\frac{1}{6}}{-1} e^{2 t}$
2. a. $x=A \cos (2 t)+B \sin (2 t), y=C \cos (2 t)+D \sin (2 t)$.
b. $\binom{A}{B} e^{-t}+\binom{C}{D} t e^{-t}$ c. $x=A \cos (3 t)+B \sin (3 t), y=C \cos (3 t)+D \sin (3 t)$
3. $\binom{x}{y}=\binom{2 e^{t}-2}{e^{t}-e^{-t}}$ 5. a. $\left(\begin{array}{cc}e^{2 t} & 0 \\ 0 & e^{5 t}\end{array}\right)$
b. $\left(\begin{array}{cc}1 & 2 t \\ 0 & 1\end{array}\right)$ c. $\binom{x}{y}=\left(\begin{array}{cc}1 & 2 t \\ 0 & 1\end{array}\right)\binom{5}{-3}$
