Mathematics 2403 Hour Examination

W. L. Green

June 15, 2000
Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

1. (36) Consider the homogeneous system $\begin{aligned} & x^{\prime}=x+6 y \\ & y^{\prime}=x+2 y\end{aligned}$
a. (9) Write this system in matrix form $\mathbf{x}^{\prime}=A \mathbf{x}$ and find the eigenvalues for A.
b. (9) Find the general solution for this system.
c. (18) Find the general solution for the nonhomogeneous system $\begin{gathered}x^{\prime}=x+6 y \\ y^{\prime}=x+2 y+e^{t}\end{gathered}$
2. (24) For each of the following systems, specify the form for the solution for the system. Do not compute the coefficients. (For example, the form for the general solution of $x^{\prime}=x$
$y^{\prime}=-5 y$ is $\begin{gathered}x=A_{1} e^{t}+A_{2} e^{-5 t} \\ y=B_{1} e^{t}+B_{2} e^{-5 t}\end{gathered}$. In this example A_{2} and B_{1} are zero, but I don't want you to have to compute any of the A 's or the B 's.) [Hint: Look again at problem 1.]
a. (8) $\begin{gathered}x^{\prime}=2 x+y \\ y^{\prime}=6 x+y+e^{-t}\end{gathered}$ $\mathbf{x}_{\mathrm{p}}=$? (A particular solution)
$x^{\prime}=x+6 y$
b. (8) $\begin{gathered}x^{\prime}=x+6 y \\ y^{\prime}=x+2 y+\sin 5 t\end{gathered}$
$\mathbf{x}_{\mathrm{p}}=$? (A particular solution)
c. (8) $\begin{aligned} & x^{\prime}=x+y \\ & y^{\prime}=x+y\end{aligned}$
$\mathbf{x}=$? (General solution)
3. (16) The system $\begin{gathered}x^{\prime}=x+2 \\ y^{\prime}=x-y+2\end{gathered}$ has fundamental matrix $U=\left(\begin{array}{cc}2 e^{t} & 0 \\ e^{t} & e^{-t}\end{array}\right)$. Find a particular solution for this system.
4. a. (8) Find an explicit formula for $e^{t A}$, where $A=\left(\begin{array}{cc}\ln 2 & 0 \\ 0 & 3\end{array}\right)$.
b. (8) Find an explicit formula for $e^{t A}$, where $A=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$.
c. (8) Solve the initial value problem $\binom{x^{\prime}=0}{y^{\prime}=x}, x(0)=-7, y(0)=-4$.

Answers.

1. a. $\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}1 & 6 \\ 1 & 2\end{array}\right)\binom{x}{y}, \lambda=4,-1$ b. $\binom{x}{y}=C_{1}\binom{2}{1} e^{4 t}+C_{2}\binom{-3}{1} e^{-t}$
c. $\binom{x}{y}=C_{1}\binom{2}{1} e^{4 t}+C_{2}\binom{-3}{1} e^{-t}+\binom{e^{-t}}{0}$
2. a. $\binom{C_{1}}{D_{1}} e^{-t}+\binom{C_{2}}{D_{2}} t e^{-t}$ b. $x=A \cos (5 t)+B \sin (5 t), y=C \cos (5 t)+D \sin (5 t)$
c. $\binom{C_{1}}{D_{1}}+\binom{C_{2}}{D_{2}} e^{2 t}$
3. $\binom{x}{y}=\binom{2 e^{t}-2}{e^{t}-e^{-t}}$
4. a. $\left(\begin{array}{cc}2^{t} & 0 \\ 0 & e^{3 t}\end{array}\right)$ b. $\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)$ c. $\binom{x}{y}=\left(\begin{array}{ll}1 & 0 \\ t & 1\end{array}\right)\binom{-7}{-4}$
