Mathematics 2403 Hour Examination

W. L. Green June 29, 2000

Directions: Do all problems. Show your work and justify your answers. Calculators are allowed, but this is a closed book examination.

- 1. (20) Find the general solution to $y' + (\tan x)y = \sin x$. [Hint: $\tan x dx = \ln(\sec x) + C$.]
- 2. (20) Find the general solution to $\frac{dy}{dx} = \cos(2x) + y\cos(2x)$.
- 3. (60) Consider the system x' = -x y $y' = 4x + 3y + e^t$
- a. (20) Write this system in matrix-vector form $\mathbf{x}'(t) = A\mathbf{x}(t) + \mathbf{b}(t)$ and find the eigenvalues for the matrix A.
- b. (20) Find the matrix exponential e^{tA} , where $A = \begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}$.
- c. (20) Find a particular solution to this system.

Answers.

- 1. $y = \cos(x)\ln(\sec(x)) + C\cos(x)$
- 2. $y = Ke^{\frac{\sin(2x)}{2}} 1$

b.
$$e^{t\mathbf{A}} = e^t e^{t(\mathbf{A} - \mathbf{I})} = e^t (\mathbf{I} + t(\mathbf{A} - \mathbf{I})) = e^t \frac{1 - 2t}{4t} \frac{-t}{1 + 2t}$$

c.
$$\mathbf{x}_{p} = e^{t} \frac{-\frac{t^{2}}{2}}{t^{2} + t}$$