Name
Teaching Assistant
Math 2403C Andrew
Instructions: 1. Closed book, calculators may be used.
2. You may use one 8.5 by 11 inch formula sheet.
3. Show your work and explain your answers and reasoning.

1. (30) On this page you will find three first order linear systems, each of which has a critical point at $\left(x_{*}, y_{*}\right)=\left(0,0\right.$. Write the system in the form $\binom{x^{\prime}}{y^{\prime}}=\mathbf{A}\binom{x}{y}$, where \mathbf{A} is a 2 by 2 matrix. Calculate the eigenvalues of \mathbf{A}, and use them to match each system with its phase portrait, selected from the pictures on the next page. Please place your answers in the spaces provided.
$x^{\prime}=-2 y$
a. $y^{\prime}=8 x$
Eigenvalues \qquad Phase Portrait \qquad
b. $x^{\prime}=x+2 y$
b. $y^{\prime}=-4 x-5 y$
Eigenvalues \qquad Phase Portrait \qquad
c. $\begin{aligned} & x^{\prime}=x+4 y \\ & y^{\prime}=-x+y\end{aligned}$
Eigenvalues \qquad Phase Portrait \qquad
2. (30) a. Locate all three of the critical points of the system

$$
\begin{align*}
& x^{\prime}=4 y-x^{2} y \\
& y^{\prime}=x^{2}-y \tag{**}
\end{align*}
$$

b. Determine the matrix of the linearization at the critical point $\left(x_{*}, y_{*}\right)$ for which $x_{*}<0$ and ${ }^{\circ}>0$.
c. What type of critical point does the system $\left({ }^{* *}\right)$ have at this $\left(x_{*}, y_{*}\right)$?
3. (40) Use the Laplace transform to solve the initial-value problem

$$
\begin{aligned}
& x^{\prime}+6 x^{\prime}+25 x=34 e^{-2 t} \\
& x(0)=0, x^{\prime}(0)=2
\end{aligned}
$$

A.	B.
C.	D.
E.	

Answers.

1. a. $\mathbf{A}=\left(\begin{array}{cc}0 & -2 \\ 8 & 0\end{array}\right), \lambda= \pm 4 i$, Phase portrait A
b. $\mathbf{A}=\left(\begin{array}{cc}1 & 2 \\ -4 & -5\end{array}\right) ; \lambda=-1,-3$; Phase portrait D
c. $\mathbf{A}=\left(\begin{array}{cc}1 & 4 \\ -1 & 1\end{array}\right), \lambda=1 \pm 2 i$, Phase portrait C
2. a. $(0,0),(2,4),(-2,4)$
b. $\left(\begin{array}{cc}16 & 0 \\ -4 & -1\end{array}\right)$
c. Unstable saddle point.
3.

$$
\begin{aligned}
X(s) & =\frac{38+2 s}{(s+2)\left(s^{2}+6 s+25\right)} \\
& =\frac{2}{s+2}+\frac{-2 s-6}{s^{2}+6 s+25} \\
& =\frac{2}{s+2}-2 \frac{s+3}{(s+3)^{2}+16}, \text { so } \\
x(t) & =2 e^{-2 t}-2 e^{-3 t} \cos (4 t)
\end{aligned}
$$

