Math 4305 Andrew
Instructions: 1. You may use your text by Strang and one sheet of notes. Calculators may also be used.
2. Show your work and explain your answers and reasoning.
3. Do any 6 of the 7 problems. Clearly indicate the problem you do not want graded on the table below.

1. (25) Find all values of the parameter a for which the following system of equations has a solution.
$x+3 y+3 z=1$
$x+y+6 z=a$
$-x+y-9 z=a$
2. (25) A matrix \mathbf{A} is said to be skew-symmetric if $\mathbf{A}^{\mathrm{T}}=-\mathbf{A}$. Exhibit a basis for the vector space of all n by n skew-symmetric matrices and calculate the dimension of this vector space.
3. (25) Let P denote the plane spanned by the vectors $\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}3 \\ 2 \\ 0\end{array}\right)$.
a. Determine the matrix \mathbf{R} for the orthogonal projection onto P.
b. Determine the matrix \mathbf{H} for the (orthogonal) reflection across P.
4. (25) Calculate the eigenvalues and eigenvectors of $\mathbf{A}=\left(\begin{array}{ccc}1 & 0 & 1 \\ -2 & 2 & 2 \\ -1 & 0 & 3\end{array}\right)$. Is \mathbf{A} similar to a diagonal matrix?
\qquad
5. (25) On the first hour test we saw that for every n by n matrix \mathbf{A}, there is a polynomial $q(x)$ of degree at most n^{2} such that $q(\mathbf{A})=\mathbf{0}$ (the identically 0 matrix). We later proved the Cayley-Hamilton Theorem, which states that if \mathbf{A} is any n by n matrix, and p denotes its characteristic polynomial, then $p(\mathbf{A})=\mathbf{0}$. The characteristic polynomial, or course, has degree n.

The minimal polynomial of \mathbf{A} is defined to be the polynomial m with leading coefficient 1 of smallest degree for which $m(\mathbf{A})=\mathbf{0}$.
a. Calculate the characteristic and minimal polynomials of $\mathbf{A}=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$.
b. Prove that if \mathbf{A} and \mathbf{B} are similar matrices, then \mathbf{A} and \mathbf{B} have the same minimal polynomial.
6. (25) The condition number of a matrix \mathbf{A} is defined to be $c(\mathbf{A})=\|\mathbf{A}\| \mathbf{A}^{-1} \|$, and it provides a measure of the sensitivity (inherent and due to round-off error) of $\mathbf{A} \mathbf{x}=\mathbf{b}$. Although the condition number is usually only estimated, in this problem we'll ask you to actually calculate two of them.
a. Using $\mid \mathbf{C} \|_{2}$ for all matrices, show that the condition number of any orthogonal matrix is 1 .
b. The n by n Hilbert matrix arises from the normal equations for least-squares polynomial approximation, and is given by $\mathbf{H}=\left(h_{i, j}\right)$ with

$$
h_{i, j}=\frac{1}{i+j-1}, \quad 1 \leq i, j \leq n
$$

Write down the 4 by 4 Hilbert matrix, and compute its condition number, using $\mathbf{\|} \|_{\infty}$ for all matrices. The inverse of this matrix is

$$
\left(\begin{array}{cccc}
16 & -120 & 240 & -140 \\
-120 & 1200 & -2700 & 1680 \\
240 & -2700 & 6480 & -4200 \\
-140 & 1680 & -4200 & 2800
\end{array}\right)
$$

7. (25) Suppose $\mathbf{A}=\left(a_{i, j}\right)$ is a matrix with $a_{i, j}>0$ for all i, j, and $\mathbf{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$ is a nonzero vector with $v_{j} \geq 0$ for all j. Show that all coordinates of $\mathbf{A} \mathbf{v}$ are strictly positive.

Answers

1. The system has a solution if and only if $a=1 / 3$.
2. Let $\mathbf{B}_{i j}$ be the n by n matrix with a 1 in position $i j$ and -1 in position $j i$. Then the collection of matrices $\mathbf{B}_{i j}$ with $i<j$ is a basis for the space of skew-symmetric matrices. Thus the dimension is $\frac{n(n-1)}{2}$.
3. $\mathbf{R}=\frac{1}{17}\left(\begin{array}{ccc}13 & 6 & -4 \\ 6 & 8 & 6 \\ -4 & 6 & 13\end{array}\right), \mathbf{H}=\mathbf{2} \mathbf{P}-\mathbf{I}$.
4. $\lambda=2,2,2$. Two linearly independent eigenvectors are $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. The matrix is not diagonalizable.
5. a. The characteristic polynomial is $(\lambda-2)^{3}$. The minimal polynomial is $(\lambda-2)^{2}$.
b. Start by showing that if $\mathbf{A}=\mathbf{S}^{-1} \mathbf{B S}$, then $p(\mathbf{A})=\mathbf{S}^{-1} p(\mathbf{B}) \mathbf{S}$.
6. a. If \mathbf{Q} is orthogonal, then $\|\mathbf{Q}\|_{2}=\sqrt{\text { maxeigenvalueof } \mathbf{Q}^{\mathbf{T}} \mathbf{Q}}=1$ since $\mathbf{Q}^{\mathbf{T}} \mathbf{Q}=\mathbf{I}$, and \mathbf{Q}^{-1} is also orthogonal.
b. Use the fact that $\|\mathbf{C}\|_{\infty}$ is the maximum absolute row sum of \mathbf{C}.
7. Please see your class notes.
