Math 4317
Hour Test 2
18 November 1994
Instructions:

1. Please begin each problem on a new sheet of paper.
2. Please do all four problems. Be sure to explain your work.
3. This is a closed book exam.
4. a. Give an $\varepsilon-\delta$ proof that $f(x)=\frac{1}{x}$ is continuous at a for every $a>0$.
b. Is f uniformly continuous on $(0, \infty)$?
c. Is f uniformly continuous on $[1, \infty)$?
5. We say that a function f satisfies a Lipschitz condition on a set D if there exists a constant $K>0$ such that $|f(x)-f(y)|<K\|x-y\|$ for all x, y in D.
a. Prove that if f satisfies a Lipschitz condition on D , then f is uniformly continuous on D.
b. Give an example of a function (and a domain D, of course) which is uniformly continuous on D but does not satisfy a Lipschitz condition on D .
6. Convince me that each of these sequences is convergent, and calculate the limit of any three of them.
a. $x_{n}=\frac{n^{3}}{3^{n}}$
b. $y_{n}=\left(1+\frac{1}{2^{n}}\right)^{\left(2^{n}\right)}$
c. $z_{n}=\left(1+\frac{1}{2^{n}}\right)^{(n)}$
d. $x_{0}=0, x_{1}=1$,
$x_{n+2}=\frac{1}{5} x_{n}+\frac{4}{5} x_{n+1}$
7. These are short-answer problems. Tell whether the statement is true or false and give a short explanation or counterexample.
a. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are divergent sequences of real numbers, then $\left(x_{n} y_{n}\right)$ is divergent also.
b. If f is a bounded continuous function on a bounded domain \mathbf{D}, then f is uniformly continuous on D .
c. If f is a continuous function whose domain is \mathbf{R} and $f(x) \in \mathbf{Z}$ for every x, then f is constant.
d. Every Cauchy sequence of rational numbers has a rational limit.
