Math 4317
Sample Test 3
Problems selected from Tests in Math 4312, Fall 1988

1. By means of partial fractions, find a formula for the partial sums of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$. Does this series converge, and if so, to what?
2. Discuss the convergence of
a. $\quad \sum_{n=2}^{\infty} \frac{1}{n \log \left(n^{2}\right)}$
b. $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$
c. $\sum_{n=1}^{\infty} n^{2} 3^{-n}$
d. $\sum_{n=1}^{\infty} \frac{1}{\left[n^{2}(2 n+1)\right]^{1 / 2}}$
3. Let $b_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n-1}-\log (n)$.
a. Show that $\left(b_{n}\right)$ is a bounded increasing sequence, and hence has a limit γ.
b. Letting $s_{N}=\sum_{n=1}^{N} \frac{1}{n}$ denote the partial sum of the harmonic series, calculate $\lim _{N \rightarrow \infty}\left(s_{2 N}-s_{N}\right)$.
4. Calculate the radii of convergence of
a. $\sum_{n=0}^{\infty}(n+2) 3^{n} x^{n}$
b. $\sum_{n=0}^{\infty}(\sqrt{n+1}-\sqrt{n}) x^{n}$
c. $\sum_{n=0}^{\infty} 2^{n} x^{\left(n^{2}\right)}$
